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Abstract—Cognitive radio (CR) is considered as a key enabling
technology for dynamic spectrum access to improve spectrum
efficiency. Although the CR concept was invented with the core
idea of realizing “cognition”, the research on measuring CR
cognition capabilities and intelligence is largely open. Deriving
the intelligence capabilities of CR not only can lead to the
development of new CR technologies, but also makes it possible to
better configure the networks by integrating CRs with different
intelligence capabilities in a more cost-efficient way. In this paper,
for the first time, we propose a data-driven methodology to
quantitatively analyze the intelligence factors of the CR with
learning capabilities. The basic idea of our methodology is to
run various tests on the CR in different spectrum environments
under different settings and obtain various performance results
on different metrics. Then we apply factor analysis on the
performance results to identify and quantize the intelligence
capabilities of the CR. More specifically, we present a case study
consisting of sixty three different types of CRs. CRs are different
in terms of learning-based dynamic spectrum access strategies,
number of sensors, sensing accuracy, and processing speed. Based
on our methodology, we analyze the intelligence capabilities of the
CRs through extensive simulations. Four intelligence capabilities
are identified for the CRs through our analysis, which comply
with the nature of the tested algorithms.

I. INTRODUCTION

In order to resolve the imminent spectrum shortage problem,
sharing spectrum with legacy systems has attracted intensive
research during the past decade. Cognitive radio (CR), which
has the capability to sense, learn, and adapt to the spectrum en-
vironment, can significantly improve spectrum efficiency and
guarantee the unharmful coexistence with the legacy systems
[1]–[5]. Nevertheless, the complex and uncertain spectrum
environment makes spectrum sharing extremely challenging.
The uncertainty may come from the radio propagation envi-
ronment, the legacy system activity, or the complex behavior
of the CR itself.

Just like human being, sophisticated cognitive capabilities
are essential for the CR to cope with the uncertainty of
spectrum environment. The cognitive capabilities collectively
define the intelligence of CR. Although the CR concept was
born with the core idea of realizing cognition [6], the research
on measuring CR intelligence is largely open.

Being able to quantitatively measure the intelligence of CR
can bring us a lot of benefits. 1) With the intelligence model
and measuring methodology, we will gain deeper insight about
the key factors that affect the intelligence of a CR which

can be used to guide the development of new CRs with high
intelligence. 2) A CR vendor may advertise and price their CR
products based on CR cognitive capabilities as a metric. A CR
with higher loads on cognitive capabilities tends to achieve
better performance in various spectrum environments, thus
will be priced higher. 3) With the knowledge of intelligence
capabilities of individual CRs, a service provider or network
manager can better configure their networks by integrating
CRs with different intelligence capabilities in a more cost-
efficient way. For example, a CR with higher intelligence
capabilities leading and networking with a set of CRs with low
intelligence capabilities may achieve a desirable performance
with low network deployment overhead. 4) Last but not the
least, the investigation of CR cognitive capabilities will shed
light on the intelligence measure and innovation of other smart
systems, such as connected cars, unmanned aerial vehicles,
smart grid, smart cities, etc.

In this paper, for the first time, we propose a data-driven
methodology to derive the intelligence capabilities of CR.
Following human intelligence theory, specifically the widely
accepted Cattell-Horn-Carroll (CHC) intelligence model [7],
we construct a CR intelligence model. Based on this model, we
develop psychometric techniques to derive the CR intelligence
capabilities. The basic idea of our methodology is to test dif-
ferent CRs in various spectrum environments under different
settings. Based on the obtained performance results, we apply
factor analysis (FA) [8] to extract and measure the intelligence
capabilities of CR.

More specifically, we present a case study consisting of sixty
three different types of CRs. We provide each CR different
levels of capabilities including learning-based dynamic spec-
trum access algorithms, number of sensors, sensing accuracy,
and processing speed. Based on our methodology, we analyze
the intelligence capabilities of the CRs through extensive
simulations. Four intelligence capabilities are identified for the
CRs through our analysis, which comply with the nature of the
tested algorithms. This validates our proposed methodology of
measuring CR intelligence.

We summarize the contributions of this paper as follows:

• We propose the idea of identifying the cognitive capabil-
ities of CR, then propose an intelligence model for the
CR (Section II).



Fig. 1. Intelligence model for the cognitive radio

• We propose a methodology to extract the CR’s cog-
nitive capabilities.The theoretical framework applied is
discussed in Section III.

• We present a case study in which we find the CR intelli-
gence capabilities of learning-based CRs under dynamic
spectrum access scenarios. Through extensive simulations
our proposed methodology is verified. The case study is
presented in section IV.

II. QUANTITATIVE INTELLIGENCE MODEL OF CR
Motivated by the CHC model [7] that is widely used to

describe human intelligence, we propose an intelligence model
for the CR. Our model is structured with three strata (or stages)
as shown in Fig. 1. At the top stage lies the stratum III, which
defines a unique general intelligence factor g. CRs with high
values in the g factor are more intelligent in general. That is,
they tend to achieve better performance in various dynamic
spectrum environments.

The stratum II represents more broad abilities in terms of
cognition capabilities contributing to intelligence, which may
be modeled as the following ones:

1) Comprehension-Knowledge (Gc): includes the breadth
and depth of a CR’s acquired knowledge and the ability
to reason using previously learned experiences or pro-
cedures.

2) Fluid reasoning (Gf ): includes the broad ability to
reason, form concepts, and perform dynamic spectrum
access using unfamiliar information or novel procedures.

3) Short-Term Memory (Gsm): is the ability to apprehend
and hold information in immediate awareness and then
use it within a short period (e.g., a few seconds or the
time the CR is on).

4) Long-Term Storage and Retrieval (Glr): is the ability to
store information and retrieve it later in the process of
communication or dynamic spectrum access.

5) Spectrum Sensing (Gs): is the ability to sense the
spectrum environment, e.g., sensing the availability of
white space or presence of primary users.

6) Processing Speed (Gp): measures the information pro-
cessing time, which may include channel sensing, ac-
cessing and switching delay, computing, reasoning, and
information retrieval delay, etc.

Within each stratum II broad ability, we can further define
stratum I which is at the bottom with more narrow abilities.

Fig. 2. A data-driven methodology to derive the intelligence capabilities of
CR

These abilities are more specific cognition capabilities. For
example, fluid reasoning can include inductive reasoning,
sequential reasoning, deductive reasoning, and speed of rea-
soning. Spectrum sensing can include number of sensors and
accuracy of sensing capability. Processing speed can include
the speed of processing on the received data, the speed of
reasoning and decision making, and the speed of switching
among channels.

III. PROPOSED METHODOLOGY TO MEASURE THE
INTELLIGENCE CAPABILITIES OF CR

In this section, we propose a data-driven methodology to
derive the intelligence capabilities of cognitive radios. The
basic idea of our methodology is illustrated in Fig. 2.

As shown in the figure, for a pool of N different CRs, say
CR1, CR2, ..., CRN , we design a battery consisting of K
tests to evaluate the cognitive capabilities of CRs. Through
the tests, we obtain a vector of performance, Yk(n), for each
CRn (1 ≤ n ≤ N ) at each test scenario k (1 ≤ k ≤ K). Then
we apply FA method [8] on the measured output to derive the
cognitive capabilities called latent factors.

The performance of a test taker can be modeled as a
general intelligence factor called g(n) in the stratum III of
the intelligence model, as shown in Fig. 1. The g(n) is called
the “common factor”. In other words, all other cognitive
capabilities in stratum II and I regress to g(n). Equation (1)
shows how cognitive applicabilities can be modeled by the
common factor g(n) [8].

yk(n) = akg(n) + zk(n) (1)

where yk(n) and ak are the measured performance and the
weight respectively. Also zk(n) is unique to the specific
performance measurement called the unique factor. In all the
terms above, n and k indicate the CR and testing scenario
indices.

Similar relation holds between the performance measure-
ment and the broad cognitive capabilities in stratum II. We
substitute g(n) by x(n) to distinguish between the general
capability and the broad capabilities. Also since in stratum
II we are measuring multiple capabilities, we indicate them
by x1, ..., xI called the group of latent factors. Since it is
possible to measure several metrics, the single value yk(n)
is substituted by the vector performance measurement Yk(n).



Equation (2) shows the relation between measured metrics
and the broad cognitive capabilities in stratum II used to
identify the group of latent factors [8].

Yk(n) = ak,1x1(n)+ak,2x2(n)+...+ak,IxI(n)+Zk(n) (2)

Where ak,1,...,ak,I and Zk(n) are the weights and the
unique factor respectively.

We apply FA technique [8] to extract the group of latent
factors and then construct the CR intelligence model. In order
to apply the FA method, first we write the equation (2) in the
matrix format [8].

Y = ΛX +Ψ (3)

Where X and Ψ are the common and the unique latent
factors matrices respectively. The Λ is the matrix of weights,
ak,I and Y is the performance matrix.

According to the expected-value theory, we obtain

Σ = E (Y Y ′) = ΛΦΛ′ +E (ΨΨ′) (4)

Where Φ = E (XX′). The equation (4) is derived based
on the assumption that the common factor and unique factor
are uncorrelated which yields E (XΨ′) = 0. E (ΨΨ′) is
also substituted by the diagonal, positive definite matrix Γ2.
Therefore, the Equation (4) can be rewritten as

Σ = ΛΦΛ′ + Γ2 (5)

It is postulated the common factors are orthogonal or
uncorrelated in the model. As a result Φ = I . Then we
subtract Γ2 from both sides of Equation (5) to derive Λ:

Σ− Γ2 = ΛΛ′ (6)

In this model, Σ − Γ2 is called “the reduced correlation
matrix” [9]. As mentioned above, the next step is to determine
the Γ2 and Λ. Since ΛΛ′ is the diagonal matrix, in order
to calculate these two matrices, we treat Λ as the matrix
Λ = AD

1
2 , where A is the eigenvector matrix and D is

the diagonal eigenvalue matrix of the matrix Σ−Γ2. For Γ2

we have
Γ2 = Σ−ΛΛ′ (7)

Equation (7) can be solved through three steps as follows.
1) Find the eigenvector and eigenvalue matrices A and D

of “the reduced correlation matrix”: Σ− Γ2 = ADA′

2) Find Λ = AD
1
2

3) Find Γ2 = Σ−ΛΛ′

According to [9], this procedure will be iterative computa-
tion until the maximum difference of the last two round of Γ2

is less than 0.001. Let S = Σ−D, then Σ−S2 will generate
the unrotated factors matrix. Normally, we will pick up factors
whose eigenvalues are greater than 1. In the practical analysis,
we use principal component analysis [9], which just considers
the common factors influencing the performance and ignores
the unique factors.

Fig. 3. Time slot structure applied by the CR

IV. CASE STUDY: INTELLIGENCE MEASURE OF CR WITH
LEARNING CAPABILITIES

In this section, we present a case study consisting of differ-
ent types of CRs. By designing a set of testing environments,
we apply our methodology presented in section III to derive
the cognitive capabilities or latent factors contributing to the
CR intelligence.

A. Settings

We consider a basic single hop scenario where there is only
one CR and one primary user (PU). Therefore, we can focus
on each CR’s ability without considering channel contention.
There are several channels in the network. The PU can appear
on some or all of the channels simultaneously. We also assume
a time slot based network. Fig. 3 shows the time slot structure
used by the CR.

As shown in the figure, the first part of the time slot is
assigned for channel sensing. During this period, the CR
senses the chosen channel and at the end of this period decides
whether the channel is idle or not. If the CR finds the channel
is idle, it begins data transmission. Otherwise, it keeps silent
to not interfere with the PU.

During the third part of the time slot, the CR learns from
its observation. Whether the channel was idle or busy, both of
them are useful information for the CR to learn and optimize
its decisions in the future. The last part is the switching period
which indicates the amount of time that it takes the CR to
switch from one channel to another one.

We have conducted extensive simulations in which there are
N = 63 different types of CRs. 10 channels are considered in
the network. K = 18 testing scenarios are designed, such that
each CR can perform on all of them. We run the simulations
in MATLAB. For each CR performing in one single testing
scenario we run the algorithm 10000 times and get the average.

B. Cognitive Radio Capabilities

Table III shows all types of CRs considered in this case
study. The different features of CRs are described as follows.
• Channel access strategy employed by the CR to learn

and adapt to the environment. It can be a learning-based
method or just a random strategy. We consider two types
of learning-based access strategies known as UCB1 [10]
and EXP3 [11] and one random access strategy. The latter
as the name suggests is based on a random access and
does not utilize any learning-based algorithm.

• Sensing accuracy which indicates the detecting probabil-
ity when the PU is present. There are several methods of
channel sensing including energy detection and feature



TABLE I
DESIGNING TEST SCENARIOS

PU Activity PU Load Channel Rate FDR

i.i.d./ on-off High Load 100 Mbps 1

Markovian Chain Medium Load 50 Mbps 0.75

Transition/ Arbitrary Low Load 10 Mbps 0.5

- Large gap - -

- random at each time - -

extraction [12]–[14]. We consider three values of 1, 0.9,
0.8 as the probability of the correct sensing. The values
are relatively large because in practice, the CRs usually
have high sensing accuracy.

• Number of sensors. Possessing more sensors, the CR
observes more channels at each time slot. Then depending
on the reasoning it employs, the CR may adapt better to
the environment. This is probably equal to higher loads
in cognitive capabilities. In this case study, we consider
the number of sensors (m) to be either 1 , 2, or 6.

• Delay is another feature of a CR that occurs during
sensing, learning, and switching parts of the time slot.
We consider all the delays occurred as one single total
delay. We assume the total delay to be either 0, 0.1ts, or
0.3ts in which ts indicates the time slot duration.

Considering all the combinations of the features above, we
can generate eighty one types of CRs. However, when the
access strategy is random since there is no learning capability
utilized, the number of channels being observed will have no
impact on the CR’s performance. So by removing eighteen
redundant combinations, 63 CRs remain.

C. Testing Scenarios

We consider several parameters to design the testing sce-
narios:

• Type of PU activity. We consider three types of activities
for the PU: I.i.d. distribution, Markovian Chain, and
arbitrary where no well defined distribution exists.

• PU Load which indicates the probability of the PU to be
active on each channel. PU may have a high load on all
the channels or may have a light load on only one channel
and a heavy load on all other channels (Large gap).
This testing scenario can discriminate among learning and
nonlearning-based access strategies. We have considered
several combinations of PU activity on the channels.

• Channel Rate. Three different values are considered as
channel rates as shown in Table I. If we assume all other
characteristics of the channels to be identical, a CR that
learns the high rate channel may be considered as having
high load in the corresponding cognitive capability.

• Frame delivery ratio (FDR) which includes the impact
of channel quality and noise on a given channel. Three
possible values for FDR are considered in this case study.

Table I shows a summary of the parameters considered.

Fig. 4. Total throughput of each CR achieved from all testing scenarios

D. Measured Outputs

We measure the performance of the CRs based on the three
different metrics:
• Throughput which is stored in y1k(n) where k and n indi-

cate the testing scenario and the CR indices respectively
and the 1 in y1k(n) indicates that the throughput is the
first metric measured.

• Delay which indicates total delay occurred in the time
slot and is stored as y2k(n). The number 2 indicates the
delay is considered as the second metric.

• Violation ratio which represents the average number of
times the CR interfered with the PU due to wrong sensing
result called miss detection. It is assumed if the CR
interferes with the PU, there will be a penalty for the
CR and its data will be blocked, so there will be no
throughput for the CR. Violation ratio is stored in y3k(n).
The number 3 indicates the third metric that we measure.

The performance measure Yk(n) is a vector equal to
Yk(n) = [y1k(n) y2k(n) y3k(n)] for n = 1, . . . , 63 and
k = 1, . . . , 18. The simulation result of the first metric,
throughput, is shown in Fig. 4. This is the total throughput
obtained by aggregating the throughput achieved from all the
testing scenarios for each CR.

As is shown in this figure, three clusters can be identified in
the graph. The first cluster (index 1 up to 27) represents CRs
employing UCB1 learning-based access strategy. The second
cluster (index 28 up to 54) belongs to the CRs employing
EXP3 learning-based access strategy. The last cluster (index
55 up to 63) represents CRs utilizing random access strategies.

One observation is that, among each cluster, as the num-
ber of sensors increases the overall throughput increases as
well. Next, the total throughput of CRs employing UCB1 is
higher than those employing EXP3 since most of the testing
scenarios designed are well behaved (stochastic) in which
UCB1 performs better [10], [11]. The third cluster illustrates
those CRs employing random access methods. Since random
strategy never utilizes the previous observations, it achieves
the lowest throughput among others. We can also observe from
the graphs that, for each three consecutive CRs (bars) in the
graph, the throughput is decreasing since the sensing accuracy
is decreasing.



Fig. 5. Latent Factors achieved by using FA

Fig. 6. Component plot achieved by using FA

In the next step, we apply FA technique. Based on the
simulations, three 63 by 18 matrices are generated for three
metrics we measure. They all together create the Yk(n) with
the dimension of 63 by 54. FA technique is applied on this
matrix using the software IBM SPSS [15].

The analysis identifies four latent factors shown in Fig. 5.
As is shown in the figure, only four factors are distinguishable
and the rest are negligible, almost zero. In Table III, columns
six up to nine correspond to the results of the FA.

Eventhough the number of cognitive capabilities are identi-
fied but it is not yet clear which cognitive broad capabilities
these factors correspond to. We need to examine the data
thoroughly and by matching them to the concepts, to find out
the corresponding intelligence capabilities.

By examining the data, four latent factors (cognitive ca-
pabilities) are found as the following: Spectrum sensing ca-
pability, processing speed capability, environment recognition
capability, and environment adaptation capability. The results
are summarized in Table II.

The data of the factor one in Table III provides information
on the violation ratio which is impacted by the sensing accu-
racy and the number of sensors. As a result we conclude that
the first factor corresponds to the spectrum sensing capability.
It is easy to see that the second latent factor is addressing the
delay. Delay is associated with the processing speed capability.
The third factor is related to the learning capability. As a
result environment recognition is the third latent factor . The
forth factor shows a better performance for EXP3 and random

Fig. 7. Latent Factors achieved by using FA for the throughput metric

Fig. 8. Component plot achieved by using FA for the throughput metric

access strategy than the UCB1 when the sensing accuracy
decreases. The same thing happens when the environment is
not not well behaved. This indicates that the EXP3 and random
access strategy adapt better to non-well behaved environments.
The reason is because they are utilizing randomness in their
access strategy. As a result this latent factor is addressing the
environment adaptation capability.

Comparing to the intelligence model proposed in section
II, processing speed capability matches broad capability Gp,
spectrum Sensing matches Gs, and the two others can corre-
spond to Gc or Gf factors as shown in Table II. Also, all the
CRs used in this case study have high load on the Gsm factor.

Next we plot the components achieved in the analysis.
Component plot shows how the scenarios in the case study
belong to each of the four latent factors. Since it is not possible
to plot four dimensional figures, we plot the components for
factors 1, 2 and 3 as shown in Fig. 6. The whole data is divided
into three clusters, each corresponding to one latent factor.

In order to get a deeper insight from the results, we can
also apply the FA technique to one of the measured outputs,
throughput. In this case two factors are identified as shown in
Fig. 7. One of them corresponds to the learning capability and
the other one corresponds to the the environment adaptation
capability. Fig. 8 shows the components of the analyzed data
in which the whole data is divided into two clusters, each
corresponding to one latent factor.



TABLE II
LATENT FACTORS IDENTIFIED THAT CONTRIBUTE TO INTELLIGENCE

Factor I Sensing Capability, Gs

Factor II Processing Speed Capability, Gp

Factor III Environment Recognition Capability, Gc or Gf

Factor IV Environment Adaptation Capability, Gc or Gf

V. RELATED WORK

The cognitive capabilities and the intelligence model of
human beings is studied in psychology [16]. Human cogni-
tion capabilities include sensing, learning, memory, problem
solving, etc. And intelligence is defined as the ability to learn
and perform cognitive tasks [16]. Cattel-Horn-Carrot [7] is
the most widely accepted model of human intelligence used
to model and analyze the human being intelligence capabilities
[5], [16].

The practical measurement of mental abilities has been
considered as a pivotal development in the behavioral sci-
ences and the theories and techniques formed a field called
phychometrics. The first attempts of mathematically more
rigorous study of intelligence measure occurred in 1940s, with
statistical techniques such as correlation and FA. Overall, FA
is used in multiple areas including psychology and economics.

There have been some efforts trying to develop comprehen-
sive benchmark frameworks to evaluate the cognitive radio
network (CRN) performance [17], or to evaluate the perfor-
mance of more general wireless networks [18]–[20]. However,
since benchmarking wireless network is a challenging task,
simulation/experimentation has been adopted widely as a
tool and in the literature benchmark is not used to test CR
intelligence, but performance.

It is useful to identify the differences between human and
CR intelligence capabilities. One is that for human beings, the
age of the test taker is an important factor that needs to be
considered when designing the test questions; Specially when
the person is at the childhood stages in which the brain is
still developing. However, with respect to the CRs a testing
scenario can be tested by all types of CR.

Another important difference is that a human being can get
tired by the long duration of the test or may not be in mood on
the test day. This can make the test results unreliable. However,
the benefit of cognitive engines as machines is that they never
get tired and the test results can always be correct, unbiased
and reliable.

VI. CONCLUSION AND FUTURE WORK

In this paper, for the first time, we have proposed the
idea of deriving intelligence capabilities of the CR. First, an
intelligence model is proposed for the CR. Then a data-driven
methodology which applies FA on the measured output, is
proposed to extract the cognitive capabilities. A case study is
presented in which through out the extensive simulations, four
latent factors are identified for the CR which comply with the
nature of our tested algorithms.

In the future, we will measure the intelligence quotient (IQ)
for each CR. IQ can be considered as a general intelligence
capability indicating how well a CR performs in different
environments. We will also expand our methods to measure
CR intelligence in multi-user and multi-hop networks.
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TABLE III
COGNITIVE RADIOS EACH WITH A DIFFERENT CAPABILITY

Index Channel Access Strategy Number of Sensors Total Delay Sensing Accuracy Factor 1 Factor 2 Factor 3 Factor 4
1 UCB1 1 0 1 -0.99854 -1.06053 0.72124 -0.67929
2 UCB1 1 0 0.9 0.07582 -1.06053 0.42578 -1.09318
3 UCB1 1 0 0.8 1.19144 -1.06053 0.22652 -1.35620
4 UCB1 1 0.1 ts 1 -0.99854 -0.26513 0.72124 -0.67929
5 UCB1 1 0.1 ts 0.9 0.07582 -0.26513 0.42578 -1.09318
6 UCB1 1 0.1 ts 0.8 1.19144 -0.26513 0.22652 -1.35620
7 UCB1 1 0.3 ts 1 -0.99854 1.32566 0.72124 -0.67929
8 UCB1 1 0.3 ts 0.9 0.07582 1.32566 0.42578 -1.09318
9 UCB1 1 0.3 ts 0.8 1.19144 1.32566 0.22652 -1.35620
10 UCB1 2 0 1 -0.91662 -1.06053 1.30529 0.37787
11 UCB1 2 0 0.9 0.19451 -1.06053 0.91472 -0.51420
12 UCB1 2 0 0.8 1.35054 -1.06053 0.54353 -1.27140
13 UCB1 2 0.1 ts 1 -0.91662 -0.26513 1.30529 0.37787
14 UCB1 2 0.1 ts 0.9 0.19451 -0.26513 0.91472 -0.51420
15 UCB1 2 0.1 ts 0.8 1.35054 -0.26513 0.54353 -1.27140
16 UCB1 2 0.3 ts 1 -0.91662 1.32566 1.30529 0.37787
17 UCB1 2 0.3 ts 0.9 0.19451 1.32566 0.91472 -0.51420
18 UCB1 2 0.3 ts 0.8 1.35054 1.32566 0.54353 -1.27140
19 UCB1 6 0 1 -0.91619 -1.06053 1.98175 2.26214
20 UCB1 6 0 0.9 0.23026 -1.06053 1.54077 1.20849
21 UCB1 6 0 0.8 1.43294 -1.06053 1.11334 0.13636
22 UCB1 6 0.1 ts 1 -0.91619 -0.26513 1.98175 2.26214
23 UCB1 6 0.1 ts 0.9 0.23026 -0.26513 1.54077 1.20849
24 UCB1 6 0.1 ts 0.8 1.43294 -0.26513 1.11334 0.13636
25 UCB1 6 0.3 ts 1 -0.91619 1.32566 1.98175 2.26214
26 UCB1 6 0.3 ts 0.9 0.23026 1.32566 1.54077 1.20849
27 UCB1 6 0.3 ts 0.8 1.43294 1.32566 1.11334 0.13636
28 EXP3 1 0 1 -1.32402 -1.06053 -0.40954 -0.46258
29 EXP3 1 0 0.9 -0.12030 -1.06053 -0.59928 -0.16071
30 EXP3 1 0 0.8 1.11229 -1.06053 -0.73378 0.26967
31 EXP3 1 0.1 ts 1 -1.32402 -0.26513 -0.40954 -0.46258
32 EXP3 1 0.1 ts 0.9 -0.12030 -0.26513 -0.59928 -0.16071
33 EXP3 1 0.1 ts 0.8 1.11229 -0.26513 -0.73378 0.26967
34 EXP3 1 0.3 ts 1 -1.32402 1.32566 -0.40954 -0.46258
35 EXP3 1 0.3 ts 0.9 -0.12030 1.32566 -0.59928 -0.16071
36 EXP3 1 0.3 ts 0.8 1.11229 1.32566 -0.73378 0.26967
37 EXP3 2 0 1 -1.29286 -1.06053 -0.30537 -0.52965
38 EXP3 2 0 0.9 -0.09329 -1.06053 -0.44370 -0.30205
39 EXP3 2 0 0.8 1.12099 -1.06053 -0.57601 -0.03410
40 EXP3 2 0.1 ts 1 -1.29286 -0.26513 -0.30537 -0.52965
41 EXP3 2 0.1 ts 0.9 -0.09329 -0.26513 -0.44370 -0.30205
42 EXP3 2 0.1 ts 0.8 1.12099 -0.26513 -0.57601 -0.03410
43 EXP3 2 0.3 ts 1 -1.29286 1.32566 -0.30537 -0.52965
44 EXP3 2 0.3 ts 0.9 -0.09329 1.32566 -0.44370 -0.30205
45 EXP3 2 0.3 ts 0.8 1.12099 1.32566 -0.57601 -0.03410
46 EXP3 6 0 1 -1.26007 -1.06053 -0.18426 -0.52123
47 EXP3 6 0 0.9 -0.07156 -1.06053 -0.32114 -0.38695
48 EXP3 6 0 0.8 1.11776 -1.06053 -0.45533 -0.23831
49 EXP3 6 0.1 ts 1 -1.26007 -0.26513 -0.18426 -0.52123
50 EXP3 6 0.1 ts 0.9 -0.07156 -0.26513 -0.32114 -0.38695
51 EXP3 6 0.1 ts 0.8 1.11776 -0.26513 -0.45533 -0.23831
52 EXP3 6 0.3 ts 1 -1.26007 1.32566 -0.18426 -0.52123
53 EXP3 6 0.3 ts 0.9 -0.07156 1.32566 -0.32114 -0.38695
54 EXP3 6 0.3 ts 0.8 1.11776 1.32566 -0.45533 -0.23831
55 Random 1 0 1 -1.61363 -1.06053 -1.54870 -0.27258
56 Random 1 0 0.9 -0.28221 -1.06053 -1.58403 1.09547
57 Random 1 0 0.8 1.06272 -1.06053 -1.61180 2.47243
58 Random 1 0.1 ts 1 -1.61363 -0.26513 -1.54870 -0.27258
59 Random 1 0.1 ts 0.9 -0.28221 -0.26513 -1.58403 1.09547
60 Random 1 0.1 ts 0.8 1.06272 -0.26513 -1.61180 2.47243
61 Random 1 0.3 ts 1 -1.61363 1.32566 -1.54870 -0.27258
62 Random 1 0.3 ts 0.9 -0.28221 1.32566 -1.58403 1.09547
63 Random 1 0.3 ts 0.8 1.06272 1.32566 -1.61180 2.47243


